Thursday, 25 October 2012

E-PORTFOLIO





 

UNIVERSITI PERGURUAN SULTAN IDRIS UPSI
TANJUNG MALIM PERAK


SEMESTER 1 SESI 2012/2013

KOD & NAMA KURSUS
SSI 3013: INFORMATION & TECHNOLOGY IN SCIENCE

TAJUK





   E-PORTFOLIO : MAKING BLOG.

 




KUMPULAN
EL-B35 (A121PJJ)

DISEDIAKAN OLEH
NAMA
NO. ID
NO. TELEFON
Mohammad Razif b. Abdul Malik
sirrazif.blogspot.com 
D20102040233
0132357016

NAMA TUTOR E-LEARNING: DR. AZMI BIN IBRAHIM

TARIKH SERAH: 6HB NOVEMBER 2012





PENGENALAN SUBJEK SSI 3013 INFORMATION ICT IN SCIENCE

Alhamdulillah dan terima kasih kepada Dr. Azmi bin Ibrahim di atas tunjuk ajar beliau dalam tajuk SSI3013 ini yang mana dalam tajuk ini beliau banyak menekankan dan membicarakan tentang betapa pentingnya teknologi ICT dalam proses pengajaran dan pembelajaran Sains. Peranan pendidikan pada abad ini amat mencabar kerana bidang ini mempunyai tanggungjawab besar bagi melaksanakan dasar peningkatan penggunaan IT dalam pengajaran-pembelajaran yang bersesuaian dengan perubahan era ICT terutamanya mata pelajaran sains. Penggunaan komputer semakin penting dalam menjana dan memperkembangkan idea dan kreativiti para pendidik dalam proses pengajaran dan pembelajaran. Dalam konteks ini, globalisasi menyebabkan wujudnya konsep dunia tanpa sempadan, konsep liberalisasi maklumat, konsep pembelajaran global, konsep perubahan global dan sebagainya (Abd. Rahim, 2005). Perubahan ini memberikan kesan sama ada positif dan juga negatif kepada masyarakat di negara membangun.

Profesion keguruan juga terjebak dalam pengaruh ini yang merupakan trend dan ideologi abab ke-21. ICT memberi kesan yang besar ke atas anjakan perubahan sistem dan pengurusan pendidikan di negara-negara membangun seperti Malaysia. Revolusi maklumat yang berlaku disebabkan kemajuan ICT memberi cabaran baharu kepada profesion keguruan, di samping kemajuan yang berlaku ini perlu dimanfaatkan untuk mempertingkatkan martabat profesion keguruan yang sedang mengharungi perubahan abab ke -21. Perkembangan pendidikan baru dalam pengetahuan ICT memerlukan anjakan peranan pendidikan dan profesion keguruan. Negara membangun memerlukan lebih ramai guru yang mempunyai pengkhususan bidang pengetahuan komunikasi maklumat (ICT). Latihan pendidikan guru juga memerlukan perubahan paradigma bagi melahirkan guru-guru yang berkelayakkan dan berkebolehan mendidik dan membangunkan masyarakat dan negara.

Selain itu, teknologi dapat mempermudahkan tugas serta meningkatkan prestasi guru seperti penggunaan teknologi untuk kerja-kerja pengajaran pembelajaran terutamanya dalam subjek sains yang baynyak memerlukan maklumat luar dan terkini melalui ICT. Winston Churcil menyatakan empayar di masa depan ialah empayar pemikiran dan minda. Untuk mengembangkan pemikiran dan minda pelajar khususnya, pendekatan pengajaran dan pembelajaran di sekolah perlu digubah kepada pemikiran penyelidikan, mengumpul maklumat, menganalisis data ke arah menggalakkan kreativiti dan motivasi pelajar.
Pendekatan pengajaran secara tradisional secara sogokan nota-nota seharusnya dikikis dari pemikiran guru tetapi diubah dengan membekalkan pengetahuan dan kemahiran ke arah mendapatkan maklumat.

Ellington, Percival dan Race (1993) menjelaskan bahawa penggunaan komputer
dalam pendidikan mempunyai beberapa kekuatan dan kelemahan tersendiri yang mana lebih berasaskan sebagai satu teknik pengajaran dan pembelajaran yang lebih menekankan peranan individu. Ramai penulis menyatakan kekuatan penggunaan komputer dalam pendidikan adalah objektif pembelajarannya yang lebih luas,  pembelajarannya yang juga boleh dilakukan sendiri serta mendapat maklum balas segera melalui pendekatan interaktif; dan membolehkan simulasi pengalaman pembelajaran dilakukan secara terus. Manakala kelemahan penggunaan komputer dalam proses pengajaran dan pembelajaran pula ialah teknologi maklumat dan komunikasi (ICT) memerlukan guru-guru celik komputer, atau sekurang-kurangnya berasa senang menggunakan papan kekunci, sukar mendapatkan bahan berasaskan komputer yang sesuai dan tersedia, dan usaha mereka bentuk bahan pembelajaran berasaskan komputer memerlukan kemahiran yang tinggi (Ellington et al. 1993). Cabaran-cabaran globalisasi menuntut agar negara membangunkan sumber tenaga yang mempunyai ciri-ciri K-worker, celik dan mahir dalam ICT, mampu bersaing pada peringkat tempatan dan pada peringkat global, bahkan memiliki jati diri dan daya saing yang tinggi.

Untuk menjayakan pelaksanaan penggunaan IT  lebih berkesan, kemudahan infrastruktur ICT perlu disediakan dan dirancang dengan baik. Kemudahan ICT dapat membantu perlaksanaan kurikulum dengan berkesan. Pembelajaran bukan lagi tertumpu dengan kaedah pengajaran di bilik kuliah semata-mata. Penggunaan teknologi ICT perlu dieksploit sepenuhnya supaya memberikan kesan yang positif dalam pembelajaran pelajar. Penggunaan modul pembelajaran dalam bentuk CD-ROM, multimedia, simulasi dan sebagainya memerlukan prasarana yang bersesuaian.



 H20 ROCKET MODEL

CONTENTS                                                                                     


1.0       INTRODUCTION                                                                         

2.0       MATERIALS AND METHODS                                                   

3.0       RESULT AND DISCUSSIONS (PHYSICS THEORY)                                                 

4.0       CONCLUSION                                                                                

5.0       VUDEO REPORT                                                                                               




1.0              INTRODUCTION
Dalam dunia Astronomi, roket berperanan secara tidak langsung untuk mendapatkan data benda-benda langit dan angkasa lepas secara lebih lengkap. Pengamatan astronomi landas bumi dengan menggunakan teleskop optic memiliki kelemahan dan masalah iaitu tidak dapat digunakan sekiranya cuaca kurang elok contohnya berawan dan hujan. Disebabkan masalah inilah para saintis  dan ilmuan khususnya di Negara-negara maju mengembangkan teleskop landas angkasa yang mengorbit bumi. Teleskop ini dibawa ke orbitnya yang berada di luar agkasa menggunakan roket. Tidak hanya mengirimkan teleskop, bahkan roket digunakan untuk perjalanan luar angkasa baik berawak mahupun tidak berawak. Misinya juga beragam, mulai dari sekadar melintas planet (fly-by) untuk mendapatkan gambar objek dari dekat, mengorbit planet, hingga mendarat dan melakukan penjelajahan di planet lain mahupun satelitnya.
Jesteru itu, dalam semester 4 ini kami pelajar-pelajar Pengajian Sains ditugaskan untuk menyediakan dan menyiapkan satu tugasan yang dapat menarik minat murid-murid untuk memahami konsep “fizik disekeliling kita”. Pemilihan Roket air sebagai projek tugasan fizik saya adalah sangat bertepatan dan diharapkan dapat memenuhi elemen dan criteria pensyarah dalam menerangkan dan mengaitkan beberapa teori fizik dalam Roket Air ini. Terdapat beberapa teori asas fizik yang perlu dipelajari dan difahami untuk menyiapkan projek roket air ini antaranya seperti kestabilan, momentum, daya keseimbangan, hukum Newton 1, 2 dan 3, tekanan atmospera, prinsip Bernoulli, jisim, berat dan sebagainya bagi memastikan Roket air ini boleh dilancarkan dengan baik. Secara ringkasnya, Roket Air adalah sebuah roket yang dibina dengan menggunakan media air sebagai pendorong agar roket tersebut dapat bergerak. Jadi Roket ini tidak menggunakan bahan bakar untuk bergerak atau meluncur. Roket air adalah sejenis contoh roket yang menggunakan air sebagai tenaga penggeraknya. Botol berisi air bertekanan tinggi yang berfungsi sebagai mesin roket biasanya diperbuat daripada botol plastik bekas minuman. Air dipaksa keluar oleh gas yang bertekanan, biasanya menggunakan tekanan udara untuk melancarkan roket ini ke udara. Bahan-bahan pembuatannya juga lebih banyak kepada penggunaan bahan terbuang dan mudah diperolehi.  Secara amnya, prinsip dasar roket merupakan pendedahan dan implementasi dari perubahan momentum serta hukum III Newton mengenai aksi-reaksi. Dalam dunia pendidikan, pelbagai percubaan mampu dilakukan untuk memahamkan kepada guru-guru dan murid-murid mengenai prinsip dasar roket bermula dari percubaan pembuatan yang sederhana menggunakan tabung bekas roll filem sampailah pembuatan roket menggunakan botol-botol bekas minuman berkarbonat.
The same concepts apply to water rockets. Rocket structure, propulsion and aerodynamics (attitude stability) are the vital factors affecting flight performance (distance, etc.). It is extremely dangerous to apply excessive pressure to the water rocket in an attempt to achieve a new distance record. From the viewpoint of safety, it is critical to understand the limitations of PET bottles in term of structureal strength and pressure resistance. When it comes to multistage water rockets, nerve-wracking challenges await those attempting to decide how to separated the first stage from the second, and how to ensure an uninterrupted supply of jet water. Much experience and engenuity will be required to design, make and safely operate the separation and second stage water-jet mechanism.
Struktur Roket H2O
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhMkQRMQVr3QbYFJ1pM4OVwga1wPc7gpHhYq6ntvYzpRsCz9EdVIyoSPkX7rc-YugwkYCnN4fEzrRRtBqUa9xk5jCyNSfK_gmdAU7UArut0ZZZhCy_Z1FSf2UpCbnR5IJ9KgvU6NYwpAn6Y/s200/Bhg+roket.jpg

Gambar rajah di atas merupakan satu gambaran ringkas roket H2O.

Bahagian-bahagian roket H2O yang perlu diketahui oleh anda. Seperti mana dalam penerangan di atas dan di dalam CD, akan saya nyatakan beberapa bahagian roket H2O yang perlu anda ketahui. Bahagian penting yang perlu ada pada roket H2O adalah badan (tempat di mana air dimasukkan dan angin dipamkan ke dalam roket), muncung (menghasilkan bentuk aerodinamik bagi roket H2O dan sayap (membolehkan roket H2O membuat penerbangan yang lurus).

2.0       MATERIALS AND METHODS

1. Peralatan/Bahan


https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh7mCjlbaozwAGuBW_lgeQMdWeze8o30hnmjoEMLgvVBI8w8NOrXX71J85fJ4yN84kQehyntnOfkW2JK67LC9GODpzQzgJDMYjwcL0gZDfOgFfyC_e4mPQ6sE0ynN1W9eEooks591gHqutp/s200/peralatan+d+perlukan.JPG

Antara bahan-bahan yang diperlukan adalah seperti berikut:
Berikut disenaraikan bahan dan peralatan yang perlu  disediakan dalam Sesi Pembinaan Roket Air (Water Rocket Making Session):
i. Pensil
ii. Marker pen
iii. Pembaris
iv. Gunting
v. Penknife
vi. Pita pelekat
vii. Kertas putih (A4)
viii. Kertas PVC (A4)
ix. Clear binding cover (A4)
x. Plastisin
xi. Span
xii. Beg plastik sampah
xiii. Benang
xiv. Gelang getah
xv. One hole punch
xvi. Penimbang
xvii. Surat khabar

Peralatan dan bahan-bahan yang diperlukan untuk membina roket H2O perlulah mencukupi. Disamping itu kita juga memerlukan botol minuman bergas sebagai komponen utama badan roket H2O  nanti.

2. Jenis botol


https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiSAzIC4V-RVj26qCIDBKwA_jjnmcUlD82E8kg0zkPF0OqmYNJyfxNLlIx-uFf_ffXsbrM3p348_-XIguLfdiRJHkEFnMrYq15qPS5d16dxqgpJWed7VzVOTJMgbQomPP0uVhGcpHC4kC36/s200/jenis+botol.JPG

Jenis-jenis botol minuman bergas terpakai 1.5L yang biasa gunakan oleh pelajar untuk membuat badan roket H2O. Botol yang kurang berlekuk-lekuk lebih sesuai digunakan untuk membuat badan roket H2O kerana ianya lebih senang untuk pemasangan sayap nanti. Sebenarnya apa saja botol plastik yang sesuai boleh digunakan samada 1.5L @ 1.25L bergantung kepada kreativiti anda untuk memasang sayap padanya nanti.

 

METHODS

1.Pemasangan Sayap


https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjsg8r4zI652mFx_DviJ8PVH2waGavBqN6Fp-V8szIfQIUCVIW0r5OgFbvdPgZ4aJsPaK1Wgk8iPQ4K4idID1KeqhSHTqFVrGItUAbA2kbG9pj5lgUyqTApGboRN1dAbpRw4BT6OR5Mid01/s200/garisan+u+sayap.JPG

Gariskan satu garisan lurus pada botol minuman bergas dengan menggunakan maker dan pembaris

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjB4GO4G0AXcjVTt1mrZ5jPIrE70eJ1dgNDVMDAww3TEtTTEDJscLtgf2n1zESt4YZJbTChiNLx5pmF0T8bwlm7Y1PmtdCPqzavtFiv6x0IGk3P30eNf3Yk013A4uq-moHYK9jJeap4T9T6/s200/garisan+u+sayap+2.JPG

Gariskan 3 lagi garisan yang selari di sekeliling botol minuman bergas tersebut. Jarak antara 1 garisan dengan 1 garisan yang lain hendaklah sama. Pastikan garisan yang anda buat adalah lurus dan selari antara 1 sama lain. Jika tidak roket h2o anda nanti tidak akan mencapaisasaran(tidakterbanglurus).

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEizA61tGJun3IztRJiQxhs0xQ1xUvvr9-g6BJTt0mjcRHewDYflnGjBDqaeIUO9be-asSZvFAGgc9o2CTXdp13xMrj3MQ4M_H9OXSY-vTVHavAFTjA5AAIyzJguxSVkRaPw2nc1cG2wKfrV/s200/psg+sayap+d+garisan.JPG
Lekatkan dengan salotape sayap yang anda buat sebelum ini mengikut garisan yang telah ditandakan tadi menggunakan selotip secara belahan  dua didasarnye.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiyVZCo78JgvO7DSZrB0tlph5PWFa9eCYuWs5hIo6Zj-sbSgwrQPr9O7yjUshePYop4onidlkUIgJt0nhZvFeeorMOpkb0RwevioCuonCdKw8eduxxf2DF4Bz5wDMPnT_d6axq11GuELfhs/s200/psg+4+sayap+d+garisan.JPG
Inilah bentuk roket H2O anda yang belum ada muncung (nose cone). Jika anda ingin memasang lebih daripada 4 sayap, caranya masih lagi sama seperti di atas. Apa yang perlu anda buat ialah pastikan anda mengukur ukur lilit botol minuman bergas di kawasan anda ingin melekatkan sayap nanti. Bahagikan ukur lilitnya dengan bilangan sayap yang ingin anda buat. Tanda dan gariskan garisan lurus seperti yang saya tunjukkan di atas.

2.Muncung (nose cone)


https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhaFliQQJqOUYuTBo975XvZG95AdbaxXxcR_v6I29C0HMVmz-mdyMpsUD71AhuZSB6fLbl_Uk4e3Kf2ZRoSlmUEIHHShcyALOD6IWNCcjpVDeFXWgVltbuC25Sx0IfUCVioTJh1rzrFSVCh/s200/buat+muncung.JPG

Muncung roket H2O boleh dibuat dengan menggunakan botol minuman bergas yang lain. Apa sahaja jenis botol minuman bergas boleh dijadikan muncung bagi roket H2O. Ambil satu botol minuman bergas terpakai yang sesuai tandakan disekelilingnya satu garisan untukpemotongannanti.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhuHuqpZxYBLgoToNpnu43G-aIiVBwQqma7tPXx7PHUCoJa6x60Q5ypxTH8w61Zok0OrPJcCPunm9ALlxrKfTqsHHuIKjdFfv2IXturfKL6r_dEFHj4aVn0iRClCT3lW3hnfP1ntDsboB1Q/s200/buat+muncung2.JPG
Potongkan bahagian yang ditanda tadi dengan menggunakan pisau. Bahagian yang berbentuk tirus akan digunakan sebagai muncung.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjjHA3FURxfGzteHscp4Cclxo59R575y6SPCwMrVKEKBu2vPYgq-h9JNt7VMLbJx_6iCDOO66whcyIBK6KYfkG6jsuhxVDjQpGBl6aTJr03uBQ0mXlYlbecd3k77wk38aeGnptxtQWrkOKD/s200/buat+muncung3.JPG
Masukkan sedikit plastesin ke dalam muncung yang dibuat. Tujuannya adalah untuk dijadikan sebagai pemberat bagi membolehkan roket H2O nanti terbang lurus.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEitItuvHQk7jRp2efNFqFHw0IhJ5pyUtTbcJu2mPx1unXSvlNOw6cqyaNf28FSaxKtyOlBHBiC2V2xVh7OdmIhjsq6TCxU3UsEPWo1kyev4Fn7Y6rKoMVG4k6EF9YMP2Lqljqaofk779KuL/s200/psg+muncung.JPG
Lekatkan muncung yang anda buat tadi pada badan roket H2O yang dah dilekatkan sayap. Maka telah selesailah pembinaan Roket Air dengan jayanya.

3.0       RESULT AND DISCUSSIONS


RESULT
Roket air yang siap sempurna sepenuhnya dari segi struktur pembentukan dan pembinaan yang melibatkan beberapa konsep fizik akan dapat dilancarkan ke udara dengan baik dan lengkap. Beberapa Teori Fizik digunakan untuk memastikan Roket air ini boleh dilancarkan dengan jayanya antaranya adalah seperti memastikan tekanan udara, daya keseimbangan, Momentum, Prinsip Bernoulli’s, aerodynamics, stability, mass, distance, Newton’s First Law, Second Law and Third Law.
i- Tekanan Udara.
dengan memastikan tekanan udara di udara dan di dalam botol roket air itu sentiasa berada dalam tekanan yang tinggi adalah antara faktor utama dalam proses pelancarannya ke udara. Tekanan udara di dalam botol roket perlu ditingkatkan sehingga 60Psi-100Psi/7bar kerana hanya dengan tekanan udara di dalam botol yg tinggi berbanding di luar inilah yg menyebabkan roket air ini mampu meluncur naik ke atas dan berapa jauh sesuatu roket itu hendak disasarkn. Disamping itu keadaan cuaca dan suhu persekitaran juga memainkan peranan penting dalam mengawal dan mengukur tekanan udara yg diperlukan.

ii- Daya Keseimbangan dan Kestabilan.
Kesemua struktur pembinaan roket air seperti body, sirip, kepala, tapak dan kandungan air perlu menggunakan prinsip keseimbangan dan kestabilan bagi memastikan keberkesanan pelancaranya menuju sasaran. Setiap daripada kesilapan walaupun kecil dalam menentukan keseimbangan ini akan menyebabkan roket air ini gagal di lancarkan dengan baik dan sempurna serta tidak mampu mencari ketepatan sasaran.

iii- Hukum Momentum.
Setiap objek yg bergerak tidak lari dari momentum. Ini kerana apabila objek mula bergerak ia akan melibatkan jisim dan kelajuan. Dengan adanya momentum samaada sebelum ataupun selepas ia bergerak akan mewujudkan daya yg menyebabab roket air ini boleh terlancar ke udara. Melalui fizik momentum pelepasan roket air boleh dirumuskan dengan Momentum (P) = Mass (M) x Speed (V). Manakala pengiraan momentum untuk sebelum dan selepas pelancaran ialah P+p = MV-mVe untuk keseluruhan 2 momentum.

iv- Jisim Roket dan Air.
Berat bagi setiap bahan-bahan yang digunakan juga merupakan faktor penting dalam melancarkan roket air dengan baik. Sebagai contoh penggunaan botol air yang lebih nipis dan ringan serta bentuk yang lebih panjang, kuantiti air yang sesuai 1/4 or 1/3 daripada botol membantu untuk mengisi tekanan udara yang cukup semasa pelancaran, struktur sirip yang lebih ringan dan nipis, itu semua mempengaruhi berat roket. Semakin ringan jisim roket n air maka semakin jauh dan lajulah pergerakan roket air.

v. Aerodynamics
Rekaan dan struktur pembinaan roket yang lebih turus dan aerodynamics adalah faktor penting dalam melawan dan melanggar tujahan arus udara. Oleh itu setiap objek yang di reka dengan struktur yang lebih aerodinamics akan mewujudkan daya kelajuan yang lebih tinggi kerana halangan angin dan udara dapat dikurangkan.

vi. Newton’s First Law.
Dalam Hukum Newton Pertama menjelaskan setiap objek berada dalam keaadaan rehat dan dalam pergerakan kosong sebelum sesuatu daya yang menolaknya. Begitu juga dengan keaadaan roket air dimana ianya dalam keaadaan  rehat dan kelajuannya zero sebelum dilancarkan. apabila tekanan udara dilepaskan dan daya tolakan meningkat daripada zero berat roket akan bertambah ringan dan menyebabkan roket air memecut ke udara dan kelajuan meningkat.

vii. Newton’s Second Law.
Dalam Hukum Newton Kedua menjelaskan the same force exerted on alarger mass produces a correspondingly smaller acceleration dan dapat dilihat dengan rumus :  
F = mA dan F = Ma. Oleh itu Daya akan wujud pada roket air apabila ia bergerak dilancarkan ke udara berdasarkan jisim dan kelajuannya.

vii. Newton’s Third Law.
Dalam Hukum Newton Ketiga menjelaskan for every action, there is an equal and opposite re-action. Oleh itu, kaitan hukum ini dengan roket air adalah dilihat dari aspek struktur Rocket Engine Thrust yang berada di bahagian bawah botol roket (Nozzle) serta mengandungi air dan tekanan udara. Nozzle ini berfungsi sebagai out take bahan bakar roket yang dimodifikasikan sehingga dapat dipasang pada botol yang berperanan sebagai Exhaust body roket yang berfungsi mengeluarkan daya tolakan kebelakang semasa pelepasan roket air ini. Hasil daripada daya tolakan kebelakang itu tadi menyebabkan body rocket akan menolak ke atas dan ke udara semasa dilancarkan.

DISCUSSIONS
1. Apa itu Rocket Air?
Secara ringkasnya, Roket Air adalah roket yang menggunakan media air sebagai pendorong agar roket tersebut dapat bergerak.Jadi Roket ini tidak menggunakan bahan bakar untuk bergerak atau meluncur. Roket air adalah sejenis contoh roket yang menggunakan air sebagai tenaga penggeraknya. Botol berisi air bertekanan tinggi yang berfungsi sebagai mesin roket biasanya terbuat dari botol plastik bekas minuman. Air dipaksa keluar oleh gas yang bertekanan, biasanya menggunakan tekanan udara untuk melancarkan roket ini ke udara.

2. Apakah bahan-bahan yang digunakan untuk membuat roket air ini?
 Untuk membuat roket air kita memerlukan beberapa alat/bahan-bahan seperti:
1)      Botol bekas air beroksida berukuran 1500 ml
2)      Polyfoam
3)      Kertas Kadbod/ manila/BC
4)      Sampah kertas
5)      Gunting
6)      Cutter
7)      Double Tape
8)      Selotip besar
9)      Pembaris
10)  Jangka Lukis
11)  Alat tulis (ballpen/pensil).

3. Bagaimana cara/kaedah untuk membuat roket air ini?
Sila lihat penerangan di atas.

4. Apakah teori-teori fizik yang terdapat dalam roket air?
Terdapat banyak teori-teori fizik yang boleh kita pelajari dalam pembuatan dan pelancaran roket air ini antaranya: tekanan udara, daya keseimbangan, Momentum, Prinsip Bernoulli’s, aerodynamics, stability, mass, distance, Newton’s First Law, Second Law and Third Law.
Sila lihat penerangan di atas.

5. Berapakah Pengukur Tekanan Udara (Psi) yang perlu di kenakan pada roket air untuk melancarkannya?
Tekanan Udara  perlu di pumpkan masuk ke dalam botol roket air ini sebanyak 60Psi-100Psi mengikut ketinggian/jarak yang hendak disasarkan.


4.0       CONCLUSION

Secara kesimpulannya, tugasan projek Roket air ini telah berjaya saya siapkan dalam tempoh yang diberikan oleh pensyarah Dr. Suriani. Terima kasih kepada semua yang terlibat samaada secara langsung ataupun tidak. Walaubagaimanapun sebenarnya projek pembinaan dan penstrukturan roket air ini adalah amat baik dan menarik kerana tidak ramai yang tahu bahawa pembelajaran tentang roket air ini amatlah penting sebagai edisi awalan untuk menarik minat pelajar-pelajar menceburi bidang astronomi dan fizik. Bermula daripada permulaan langkah pembinaannya, roket air ini banyak memberi pengetahuan dari segi mental dan fizikal. Jika dilihat daripada mencipta rekabentuk melalui langkah-langkah yang telah saya jelaskan di atas , roket air ini memerlukan banyak kreativiti dan kebijaksanaan kerana belum tentu sesebuah roket air yang dicipta itu berjaya akhirnya dilancarkan. Jesteru itu dengan penghasilan tugasan ini mudah-mudahan dapat memberi sedikit panduan kepada pembaca-pembaca dan pencari-pencari maklumat untuk merekabentuk satu roket air yang baik dan menarik dari segi semua aspek. 
Secara ringkasnya, Roket Air adalah roket yang menggunakan media air sebagai pendorong agar roket tersebut dapat bergerak.Jadi Roket ini tidak menggunakan bahan bakar untuk bergerak atau meluncur. Roket air adalah sejenis contoh roket yang menggunakan air sebagai tenaga penggeraknya. Botol berisi air bertekanan tinggi yang berfungsi sebagai mesin roket biasanya terbuat dari botol plastik bekas minuman. Air dipaksa keluar oleh gas yang bertekanan, biasanya menggunakan tekanan udara untuk melancarkan roket ini ke udara. Roket air yang siap sempurna sepenuhnya dari segi struktur pembentukan dan pembinaan yang melibatkan beberapa konsep fizik akan dapat dilancarkan ke udara dengan baik dan lengkap. Beberapa Teori Fizik digunakan untuk memastikan Roket air ini boleh dilancarkan dengan jayanya antaranya adalah seperti memastikan tekanan udara, daya keseimbangan, Momentum, Prinsip Bernoulli’s, aerodynamics, stability, mass, distance, Newton’s First Law, Second Law and Third Law. Akhirnya , mudah-mudahan sumber-sumber maklumat yang saya sediakan di atas sedikit sebanyak dapat memberi sumbangan untuk sesiapa sahaja yang ingin  membina dan merekacipta sebuah roket air yang baik dan berkualiti.

 
Secara ringkasnya, Roket Air adalah roket yang menggunakan media air sebagai pendorong agar roket tersebut dapat bergerak.Jadi Roket ini tidak menggunakan bahan bakar untuk bergerak atau meluncur. Roket air adalah sejenis contoh roket yang menggunakan air sebagai tenaga penggeraknya. Botol berisi air bertekanan tinggi yang berfungsi sebagai mesin roket biasanya terbuat dari botol plastik bekas minuman. Air dipaksa keluar oleh gas yang bertekanan, biasanya menggunakan tekanan udara untuk melancarkan roket ini ke udara.
Roket air yang siap sempurna sepenuhnya dari segi struktur pembentukan dan pembinaan yang melibatkan beberapa konsep fizik akan dapat dilancarkan ke udara dengan baik dan lengkap. Beberapa Teori Fizik digunakan untuk memastikan Roket air ini boleh dilancarkan dengan jayanya antaranya adalah seperti memastikan tekanan udara, daya keseimbangan, Momentum, Prinsip Bernoulli’s, aerodynamics, stability, mass, distance, Newton’s First Law, Second Law and Third Law.

Tuesday, 23 October 2012

TOPIC: NUCLEAR CHEMISTRY

INTRODUCTION OF NUCLEAR ENERGY

1. The energy released by a nuclear reaction, especially by fission or fusion.
2. Nuclear energy regarded as a source of power. Also called atomic energy.
The energy released by the nucleus of an atom as the result of nuclear fission, nuclear fusion, or radioactive decay. The amount of energy released by the nuclear fission of a given mass of uranium is about 2,500,000 times greater than that released by the combustion of an equal mass of carbon. And the amount of energy released by the nuclear fusion of a given mass of deuterium is about 400 times greater that that released by the nuclear fission of an equal mass of uranium. Also called atomic energy. Nuclear energy is energy that is generated through the use of Uranium, a natural metal that is mined all over the world. Nuclear energy is created through complex processes in nuclear power stations, and the first nuclear power station was established in 1956 in Cumbria, England. Today, many military operations and vessels use nuclear power plants and nuclear energy for their energy source, and nuclear energy is used in many other capabilities such that it provides 16% of the Earth’s energy requirements.
Nuclear energy is created through chemical reactions that involve the splitting or merging of the atoms of nuclei together. The process of splitting an atom’s nucleus is termed fission, and the process of merging the nuclei if atoms is termed merging. Converting nuclear masses into energy forms is known through the popular chemical equation of E = mc2, where E is known as the amount of energy released, m is known as the mass of the nuclei, and c is the value of the speed of light. The power from nuclear energy was first discovered in 1896 by Henri Becquerel, a French physicist who saw that some photographic plates that had been stored near uranium turned dark, or black, like X-Ray plates did. Thus, Uranium was seen as a resource for nuclear energy.
Nuclear energy is created in nuclear power stations, where uranium rods are the fuel used to create the energy or heat. The process through fission, where neutrons in the Uranium smash into the nucleus of atoms of Uranium. The Uranium nuclei will then split in half and release an energy that comes in a form of heat. At this point, carbon dioxide in gas form will be pumped into the reactors with the Uranium, removing the heat from the system. The gas turns very hot, and this heat is used to heat water into steam. The steam created from this process will drive the turbines which in turn drive the generators that produce the nuclear energy. The nuclear power reactor that is creating all of these reactions is controlled through rods of boron, known as control rods. These Boron rods absorb the neutrons. The rods will be lowered into the reactor to absorb neutrons and slow down the process of fission. In order to generate more power, the rods are raised again so that even more neutrons can crash into the atoms of Uranium.
Creating nuclear energy is a complex chemical process that can be very dangerous. It does however have many advantages. Nuclear energy is more affordable to create than coal energy, and does not use as much fuel in the process. It also produces less waste, and does not produce carbon dioxide or smoke. These benefits mean that nuclear energy is more advantageous than coal energy, as the production of nuclear energy does not contribute to environmental hazards or the greenhouse effect.

















THE USE OF RADIOACTIVE COMPOUND IN MEDICAL 
Nuclear medicine is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. In nuclear medicine procedures, radionuclides are combined with other elements to form chemical compounds, or else combined with existing pharmaceutical compounds, to form radiopharmaceuticals. These radiopharmaceuticals, once administered to the patient, can localize to specific organs or cellular receptors. This property of radiopharmaceuticals allows nuclear medicine the ability to image the extent of a disease process in the body, based on the cellular function and physiology, rather than relying on physical changes in the tissue anatomy. In some diseases nuclear medicine studies can identify medical problems at an earlier stage than other diagnostic tests. Nuclear medicine, in a sense, is "radiology done inside out" or "endo-radiology" because it records radiation emitting from within the body rather than radiation that is generated by external sources like X-rays.
Treatment of diseased tissue, based on metabolism or uptake or binding of a particular ligand, may also be accomplished, similar to other areas of pharmacology. However, the treatment effects of radiopharmaceuticals rely on the tissue-destructive power of short-range ionizing radiation.
In the future nuclear medicine may provide added impetus to the field known as molecular medicine. As understanding of biological processes in the cells of living organism expands, specific probes can be developed to allow visualization, characterization, and quantification of biologic processes at the cellular and subcellular levels.[1] Nuclear medicine is a possible specialty for adapting to the new discipline of molecular medicine, because of its emphasis on function and its utilization of imaging agents that are specific for a particular disease process.

 

Diagnostic medical imaging

Diagnostic

Radionuclides are powerful tools for diagnosing medical disorders for three reasons. First, many chemical elements tend to concentrate in one part of the body or another. As an example, nearly all of the iodine that humans consume in their diets goes to the thyroid gland. There it is used to produce hormones that control the rate at which the body functions.
Second, the radioactive form of an element behaves biologically in exactly the same way that a nonradioactive form of the element behaves. When a person ingests (takes into the body) the element iodine, for example, it makes no difference whether the iodine occurs in a radioactive or nonradioactive form. In either case, it tends to concentrate in the thyroid gland.
Third, any radioactive material spontaneously decays, breaking down into some other form with the emission of radiation. That radiation can be detected by simple, well-known means. When radioactive iodine enters the body, for example, its progress through the body can be followed with a Geiger counter or some other detection instrument. Such instruments pick up the radiation given off by the radionuclide and make a sound, cause a light to flash, or record the radiation in some other way.
If a physician suspects that a patient may have a disease of the thyroid gland, that patient may be given a solution to drink that contains radioactive iodine. The radioactive iodine passes through the body and into the thyroid gland. Its presence in the gland can be detected by means of a special device. The physician knows what the behavior of a normal thyroid gland is from previous studies; the behavior of this particular patient's thyroid gland can then be compared to that of a normal gland. The test therefore allows the physician to determine whether the patient's thyroid is functioning normally.


In nuclear medicine imaging, radiopharmaceuticals are taken internally, for example intravenously or orally. Then, external detectors (gamma cameras) capture and form images from the radiation emitted by the radiopharmaceuticals. This process is unlike a diagnostic X-ray where external radiation is passed through the body to form an image.
There are several techniques of diagnostic nuclear medicine.
1.
  • http://upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Nl_bone_scan2.jpg/119px-Nl_bone_scan2.jpg
A nuclear medicine whole body bone scan. The nuclear medicine whole body bone scan is generally used in evaluations of various bone related pathology, such as for bone pain, stress fracture, nonmalignant bone lesions, bone infections, or the spread of cancer to the bone.




2. ·  http://upload.wikimedia.org/wikipedia/en/thumb/0/02/Nl_mpi2.jpg/120px-Nl_mpi2.jpg
Nuclear medicine myocardial perfusion scan with Thallium-201 for the rest images (bottom rows) and Tc-Sestamibi for the stress images (top rows). The nuclear medicine myocardial perfusion scan plays a pivotal role in the noninvasive evaluation of coronary artery disease. The study not only identifies patients with coronary artery disease, it also provides overall prognostic information or overall risk of adverse cardiac events for the patient.
3. ·  http://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Parathyroid_subtraction.jpg/120px-Parathyroid_subtraction.jpg
A nuclear medicine parathyroid scan demonstrates a parathyroid adenoma adjacent to the left inferior pole of the thyroid gland. The above study was performed with Technetium-Sestamibi (1st column) and Iodine-123 (2nd column) simultaneous imaging and the subtraction technique (3rd column).



4. ·  http://upload.wikimedia.org/wikipedia/commons/thumb/9/94/HIDA.jpg/120px-HIDA.jpg
Normal hepatobiliary scan (HIDA scan). The nuclear medicine hepatobiliary scan is clinically useful in the detection of the gallbladder disease.


5.  ·  http://upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Ventperf.jpg/120px-Ventperf.jpg
Normal pulmonary ventilation and perfusion (V/Q) scan. The nuclear medicine V/Q scan is useful in the evaluation of pulmonary embolism.


6. http://upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Thyroid_scan.jpg/120px-Thyroid_scan.jpg
Thyroid scan with Iodine-123 for evaluation of hyperthyroidism


7. ·  http://upload.wikimedia.org/wikipedia/en/thumb/7/75/Hemangioma_scan.jpg/120px-Hemangioma_scan.jpg
A nuclear medicine SPECT liver scan with technetium-99m labeled autologous red blood cells. A focus of high uptake (arrow) in the liver is consistent with a hemangioma.
Nuclear medicine tests differ from most other imaging modalities in that diagnostic tests primarily show the physiological function of the system being investigated as opposed to traditional anatomical imaging such as CT or MRI. Nuclear medicine imaging studies are generally more organ or tissue specific (e.g.: lungs scan, heart scan, bone scan, brain scan, etc.) than those in conventional radiology imaging, which focus on a particular section of the body (e.g.: chest X-ray, abdomen/pelvis CT scan, head CT scan, etc.). In addition, there are nuclear medicine studies that allow imaging of the whole body based on certain cellular receptors or functions. Examples are whole body PET scan or PET/CT scans, gallium scans, indium white blood cell scans, MIBG and octreotide scans.
http://upload.wikimedia.org/wikipedia/en/thumb/2/2a/Iodine_wb_scan.jpg/220px-Iodine_wb_scan.jpg
http://bits.wikimedia.org/static-1.20wmf12/skins/common/images/magnify-clip.png

Iodine-123 whole body scan for thyroid cancer evaluation. The study above was performed after the total thyroidectomy and TSH stimulation with thyroid hormone medication withdrawal. The study shows a small residual thyroid tissue in the neck and a mediastinum lesion, consistent with the thyroid cancer metastatic disease. The uptakes in the stomach and bowel are normal physiologic findings.
While the ability of nuclear metabolism to image disease processes from differences in metabolism is unsurpassed, it is not unique. Certain techniques such as fMRI image tissues (particularly cerebral tissues) by blood flow, and thus show metabolism. Also, contrast-enhancement techniques in both CT and MRI show regions of tissue which are handling pharmaceuticals differently, due to an inflammatory process.
Diagnostic tests in nuclear medicine exploit the way that the body handles substances differently when there is disease or pathology present. The radionuclide introduced into the body is often chemically bound to a complex that acts characteristically within the body; this is commonly known as a tracer. In the presence of disease, a tracer will often be distributed around the body and/or processed differently. For example, the ligand methylene-diphosphonate (MDP) can be preferentially taken up by bone. By chemically attaching technetium-99m to MDP, radioactivity can be transported and attached to bone via the hydroxyapatite for imaging. Any increased physiological function, such as due to a fracture in the bone, will usually mean increased concentration of the tracer. This often results in the appearance of a 'hot-spot' which is a focal increase in radio-accumulation, or a general increase in radio-accumulation throughout the physiological system. Some disease processes result in the exclusion of a tracer, resulting in the appearance of a 'cold-spot'. Many tracer complexes have been developed to image or treat many different organs, glands, and physiological processes.


 

 

Interventional nuclear medicine

Radionuclide therapy can be used to treat conditions such as hyperthyroidism, thyroid cancer, and blood disorders.
In nuclear medicine therapy, the radiation treatment dose is administered internally (e.g. intravenous or oral routes) rather from an external radiation source.
The radiopharmaceuticals used in nuclear medicine therapy emit ionizing radiation that travels only a short distance, thereby minimizing unwanted side effects and damage to noninvolved organs or nearby structures. Most nuclear medicine therapies can be performed as outpatient procedures since there are few side effects from the treatment and the radiation exposure to the general public can be kept within a safe limit.
Most nuclear medicine therapies will also require appropriate patient preparation prior to a treatment.

Treatment

Radionuclides can also be used to treat medical disorders because of the radiation they emit. Radiation has a tendency to kill cells. Under many circumstances, that tendency can be a dangerous side effect: anyone exposed to high levels of radiation may become ill and can even die. But the cell-killing potential of radiation also has its advantages. A major difference between cancer cells and normal cells, for example, is that the former grow much more rapidly than the latter. For this reason, radiation can be used to destroy the cells responsible for a patient's cancer.
A radionuclide frequently used for this purpose is cobalt-60. It can be used as follows. A patient with cancer lies on a bed surrounded by a large machine that contains a sample of cobalt-60. The machine is then rotated in such a way around the patient's body that the radiation released by the sample is focused directly on the cancer. That radiation kills cancer cells and, to a lesser extent, some healthy cells too. If the treatment is successful, the cancer may be destroyed, producing only modest harm to the patient's healthy cells. That "modest harm" may occur in the form of nausea, vomiting, loss of hair, and other symptoms of radiation sickness that accompany radiation treatment.

Words to Know

Diagnosis: Any attempt to identify a disease or other medical disorder.
Isotopes: Two or more forms of an element that have the same chemical properties but that differ in mass because of differences in the number of neutrons in their nuclei.
Radioactivity: The property possessed by some elements of spontaneously emitting energy in the form of particles or waves by disintegration of their atomic nuclei.
Radioactive decay: The process by which an isotope breaks down to form a different isotope, with the release of radiation.
Radioactive isotope: A form of an element that gives off radiation and changes into another isotope.
Radionuclide: A radioactive isotope.
Radioactive isotopes can be used in other ways for the treatment of medical disorders. For example, suppose that a patient has a tumor on his or her thyroid. One way of treating that tumor might be to give the patient a dose of radioactive iodine. In this case, the purpose of the iodine is not to diagnose a disorder, but to treat it. When the iodine travels to the thyroid, the radiation it gives off may attack the tumor cells present there, killing those cells and thereby destroying the patient's tumor.

Some Diagnostic Radionuclides Used in Medicine

Nuclear Medicine
Radionuclide
Use
Chromium–51
Volume of blood and of red blood cells
Cobalt–58
Uptake (absorption) of vitamin B 12
Gallium–67
Detection of tumors and abscesses
Iodine–123
Thyroid studies
Iron–59
Rate of formation/lifetime of red blood cells
Sodium–24
Studies of the circulatory system
Thallium–201
Studies of the heart
Technetium–99
Many kinds of diagnostic studies

Common nuclear medicine (unsealed source) therapies
Substance
Condition
Iodine-131-sodium iodide
Yttrium-90-ibritumomab tiuxetan (Zevalin) and Iodine-131-tositumomab (Bexxar)
refractory lymphoma
palliative bone pain treatment





In some centers the nuclear medicine department may also use implanted capsules of isotopes (brachytherapy) to treat cancer.
Commonly used radiation sources (radionuclides) for brachytherapy
Radionuclide
Type
Half-life
Energy
Caesium-137 (137Cs)
γ-ray
30.17 years
0.662 MeV
Cobalt-60 (60Co)
γ-rays
5.26 years
1.17, 1.33 MeV
Iridium-192 (192Ir)
β--particles
73.8 days
0.38 MeV (mean)
Iodine-125 (125I)
γ-rays
59.6 days
27.4, 31.4 and 35.5 keV
Palladium-103 (103Pd)
γ-ray
17.0 days
21 keV (mean)
Ruthenium-106 (106Ru)
β--particles
1.02 years
3.54 MeV

 

 

 

 






















Applications of Radioactive Tracers


Radioactive Tracers
A radioactive isotope replacing a stable chemical element in a compound (said to be radiolabeled) and so able to be followed or tracked through one or more reactions or systems by means of a radiation detector; used especially for such a compound that is introduced into the body for study of the compound's metabolism, distribution, passage through the body and elimination to be followed in the living animal.
Radioactive tracers are substances that contain a radioactive atom to allow easier detection and measurement. (Radioactivity is the property possessed by some elements of spontaneously emitting energy in the form of particles or waves by disintegration of their atomic nuclei.) For example, it is possible to make a molecule of water in which one of the two hydrogen atoms is a radioactive tritium (hydrogen-3) atom. This molecule behaves in almost the same way as a normal molecule of water. The main difference between the tracer molecule containing tritium and the normal molecule is that the tracer molecule continually gives off radiation that can be detected with a Geiger counter or some other type of radiation detection instrument.
One application for the tracer molecule described above would be to monitor plant growth by watering plants with it. The plants would take up the water and use it in leaves, roots, stems, flowers, and other parts in the same way it does with normal water. In this case, however, it would be possible to find out how fast the water moves into any one part of the plant. One would simply pass a Geiger counter over the plant at regular intervals and see where the water has gone.
.Radioactive tracer technology has been used for many years as a tool to make highly sensitive real-time measurements of wear and corrosion. With this technique, the material of interest is tagged with radioactive isotopes through either direct activation of a relatively small number of atoms in the component itself, or implantation of radioactive isotopes. As the component wears or corrodes under test, radioactive atoms are transported from the surface in the form of wear particles or corrosion products. Wear or corrosion is measured in real-time through either interrogation of the buildup of radioactivity in the transport fluid, or by the reduction in activity of the labeled wear component. The process involves selection of an appropriate labeling technique, labeling of a component or components of interest, calibration, testing and data reduction and analysis.
Although the majority of the work performed has been in the automotive engine and lubricant industry, Southwest Research Institute® has recently extended the application into other fields, such as hydraulic pump wear, prosthetic hip joint wear, wear in marine engines and crude oil corrosivity. This paper discusses the various techniques employed to label components of interest, the advantages of the techniques, and gives several examples of current applications of this technology.

Applications

1.Industry and research.
Radioactive tracers have applications in medicine, industry, agriculture, research, and many other fields of science and technology. For example, a number of different oil companies may take turns using the same pipeline to ship their products from the oil fields to their refineries. How do companies A, B, and C all know when their oil is passing through the pipeline? One way to solve that problem is to add a radioactive tracer to the oil. Each company would be assigned a different tracer. A technician at the receiving end of the pipeline can use a Geiger counter to make note of changes in radiation observed in the incoming oil. Such a change would indicate that oil for a different company was being received.
Another application of tracers might be in scientific research on plant nutrition. Suppose that a scientist wants to find out how plants use some nutrient such as phosphorus. The scientist could feed a group of plants fertilizer that contains radioactive phosphorus. As the plant grows, the location of the phosphorus could be detected by use of a Geiger counter. Another way to trace the movement of the phosphorus would be to place a piece of photographic film against the plant. Radiation from the phosphorus tracer would expose the film, in effect taking its own picture of its role in plant growth.
2.Medical applications.
Some of the most interesting and valuable applications of radioactive tracers have been in the field of medicine. For example, when a person ingests (takes into the body) the element iodine, that element goes largely to the thyroid gland located at the base of the throat. There the iodine is used in the production of various hormones (chemical messengers) that control essential body functions such as the rate of metabolism (energy production and use).
Suppose that a physician suspects that a person's thyroid gland is not functioning properly. To investigate that possibility, the patient can be given a glass of water containing sodium iodide (similar to sodium chloride, or table salt). The iodine in the sodium iodide is radioactive. As the patient's body takes up the sodium iodide, the path of the compound through the body can be traced by means of a Geiger counter or some other detection device. The physician can determine whether the rate and location of uptake is normal or abnormal and, from that information, can diagnose any problems with the patient's thyroid gland.














CONCLUSION
The energy released by the nucleus of an atom as the result of nuclear fission, nuclear fusion, or radioactive decay. The amount of energy released by the nuclear fission of a given mass of uranium is about 2,500,000 times greater than that released by the combustion of an equal mass of carbon. And the amount of energy released by the nuclear fusion of a given mass of deuterium is about 400 times greater that that released by the nuclear fission of an equal mass of uranium. Also called atomic energy. Nuclear energy is energy that is generated through the use of Uranium, a natural metal that is mined all over the world. Nuclear energy is created through complex processes in nuclear power stations, and the first nuclear power station was established in 1956 in Cumbria, England. Today, many military operations and vessels use nuclear power plants and nuclear energy for their energy source, and nuclear energy is used in many other capabilities such that it provides 16% of the Earth’s energy requirements.
Nuclear energy is created through chemical reactions that involve the splitting or merging of the atoms of nuclei together. The process of splitting an atom’s nucleus is termed fission, and the process of merging the nuclei if atoms is termed merging. Converting nuclear masses into energy forms is known through the popular chemical equation of E = mc2, where E is known as the amount of energy released, m is known as the mass of the nuclei, and c is the value of the speed of light. The power from nuclear energy was first discovered in 1896 by Henri Becquerel, a French physicist who saw that some photographic plates that had been stored near uranium turned dark, or black, like X-Ray plates did. Thus, Uranium was seen as a resource for nuclear energy.
Nuclear medicine is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. In nuclear medicine procedures, radionuclides are combined with other elements to form chemical compounds, or else combined with existing pharmaceutical compounds, to form radiopharmaceuticals. These radiopharmaceuticals, once administered to the patient, can localize to specific organs or cellular receptors. This property of radiopharmaceuticals allows nuclear medicine the ability to image the extent of a disease process in the body, based on the cellular function and physiology, rather than relying on physical changes in the tissue anatomy. In some diseases nuclear medicine studies can identify medical problems at an earlier stage than other diagnostic tests. Nuclear medicine, in a sense, is "radiology done inside out" or "endo-radiology" because it records radiation emitting from within the body rather than radiation that is generated by external sources like X-rays.
Treatment of diseased tissue, based on metabolism or uptake or binding of a particular ligand, may also be accomplished, similar to other areas of pharmacology. However, the treatment effects of radiopharmaceuticals rely on the tissue-destructive power of short-range ionizing radiation.
In the future nuclear medicine may provide added impetus to the field known as molecular medicine. As understanding of biological processes in the cells of living organism expands, specific probes can be developed to allow visualization, characterization, and quantification of biologic processes at the cellular and subcellular levels.[1] Nuclear medicine is a possible specialty for adapting to the new discipline of molecular medicine, because of its emphasis on function and its utilization of imaging agents that are specific for a particular disease process.
Radioactive tracers are substances that contain a radioactive atom to allow easier detection and measurement. (Radioactivity is the property possessed by some elements of spontaneously emitting energy in the form of particles or waves by disintegration of their atomic nuclei.) For example, it is possible to make a molecule of water in which one of the two hydrogen atoms is a radioactive tritium (hydrogen-3) atom. This molecule behaves in almost the same way as a normal molecule of water. The main difference between the tracer molecule containing tritium and the normal molecule is that the tracer molecule continually gives off radiation that can be detected with a Geiger counter or some other type of radiation detection instrument.


Some of the most interesting and valuable applications of radioactive tracers have been in the field of medicine. For example, when a person ingests (takes into the body) the element iodine, that element goes largely to the thyroid gland located at the base of the throat. There the iodine is used in the production of various hormones (chemical messengers) that control essential body functions such as the rate of metabolism (energy production and use).
Suppose that a physician suspects that a person's thyroid gland is not functioning properly. To investigate that possibility, the patient can be given a glass of water containing sodium iodide (similar to sodium chloride, or table salt). The iodine in the sodium iodide is radioactive. As the patient's body takes up the sodium iodide, the path of the compound through the body can be traced by means of a Geiger counter or some other detection device. The physician can determine whether the rate and location of uptake is normal or abnormal and, from that information, can diagnose any problems with the patient's thyroid gland.